
David B. LaVallee
Ford Aerospace and Communications Corp.

College Park, Maryland

1 INTRODUCTION

The purpose of this research project is to investigate
the feasibility of using Ada for rule-based expert systems
with real-time performance requirements. This includes
exploring the Ada features which give improved performance
to expert systems as well as optimizing the tradeoffs or
workarounds that the use of Ada may require. A prototype
inference engine for general purpose expert system use was
built using Ada, and rule firing rates in excess of 500 per
second were demonstrated on a single MC68000 processor.

The knowledge base uses a directed acyclic graph to
represent production rules. The graph allows the use of
AND, OR, and NOT logical operators. The inference engine
uses a combination of both forward and backward chaining in
order to reach goals as quickly as possible. Future efforts
will include additional investigation of multiprocessing to
improve performance and creating a user interface allowing
rule input in an Ada-like syntax.

Some of the issues discussed concerning Ada's use in
expert systems include: How should a knowledge base be
structured in Ada? How should the knowledge base be
searched, especially in the context of a dynamic problem
space with new data constantly entering the system? Can
real-time performance be achieved?

A critical issue involves the use of Ada's multitasking
to implement parallel algorithms in expert systems. Clearly
the inference engine can be implemented as a single task
which can be integrated into a larger system and execute
only when necessary. However, the execution of the
inference mechanism in a parallel manner should increase
performance. Using segmented knowledge bases, backward
chaining in parallel on all goals at once, and forward
chaining in parallel on individual rules are some of the
different strategies to be considered. These strategies use
different levels of granularity. Using an algorithm with a
low level of granularity, fewer parallel computations will
be performed and intertask communication will be less
frequent . Using a high level of granularity, much
computation is done in parallel, however it involves
considerable intertask communication. The overhead involved

E . 4 . 3 . 1 .

in creating tasks and in communicating between them, must be
weighed against the benefits of the parallel performance.

2 EXPERT SYSTEM USE IN THE SPACE STATION

The Space Station will be a tremendously complex
system. The automation of many of the Space Station
activities and related monitoring functions in a safe and
reliable manner will help to increase the efficiency and
cost effectiveness of the system. In addition, one of the
key engineering guidelines for the Space Station is that it
should be able to carry out normal operations for some
finite period of time without contact with the ground. As
pointed out in a NASA Technical Memorandum on Automation
Technology For The Space Station [l),

"Expert systems are needed to perform many
monitoring and control functions requiring
complex status analysis and automated
decision making so that the Station is less
dependent on ground support in these
areas.)I

Also in [l],

"In emergency situations, automated systems
which respond very rapidly to a crisis can
bring the system to a fail-safe condition
before extensive damage occurs... Without
automation, humans may be placed more often
in pressure-prone situations such as EVA
and emergency maintenance in which there is
an increased chance of error."

Expert systems could incorporate fault diagnosis, isolation,
and recovery to enhance crew safety. Alarms could be
triggered automatically to warn crew members of hazardous
situations. In addition, many faults could be corrected
before they pose any danger to the crew or spacecraft.

3 FORD ADA INFERENCE ENGINE

3.1 Description

The Ford Ada Inference Engine (FAIE) is a research
prototype expert system inference engine designed to execute
as an Ada task embedded in an expert system which could in
turn be embedded in a larger program. The sample
application discussed here involves using FAIE for fault
diagnosis. A typical rule in this type of system might be:

E.4.3.2.

.

"IF temperature is above normal and
heater output is above normal,

THEN power off heater."

The knowledge base is structured as a directed acyclic
graph. This can be thought of as a network of nodes with
the links all pointing in the same direction. For the
diagnostic system, the leaf nodes on one side of the graph
represent the various sensor data measurements. Commands
for corrective action are the goal nodes on the other side
of the graph. The relationships between erroneous
measurements are the intermediate nodes leading to a goal.
Figure 1 shows a portion of a sample graph. Note: the
dotted lines represent additional portions of the graph that
are not shown.

The leaf nodes represent initial data points that must
be provided to the inference engine. The nodes on the other
side of the graph represent goal states that are sought when
executing the inference engine. The nodes in between
represent hypotheses or subgoals that will be tested. The
links between the nodes are the llproduction rulesv1 that the
inference engine uses to traverse the graph.

Since we have a compiled, static knowledge base, all
elements are present in the graph. Each node has a status
which we will refer to as tgflaggedll, Ilunflagged", or
unknown. A lgflaggedll node is one that satisfies its
associated IF-THEN rule. We must distinguish between an
untested node (status equals unknown), and a node that was
tested and does not satisfy the associated IF-THEN rule
(status equals 'Iunflaggedt1). A I1flagged1l node is one that
will be used to traverse the graph. The path to a goal must
be continuous through ttflaggedll nodes. An ltunflaggedll node
represents a "dead end".

Status for all the leaf nodes is passed to the
inference engine when a problem exists. Figure 2 shows the
sample knowledge base with all the leaves (nodes 1-11) given
an initial status. Nodes 2,3,10 and 11 are Itflaggedf1.

In an attempt to find a goal as quickly as possible,
the successors of the first leaf node are examined
and the first one in the list is visited using Ada procedure
FORWARD-CHAIN. Since the status of the successor node is
initialized to unknown, its predecessors are examined along
with its AND/OR flag to determine its status. If the status
of this first successor to the first leaf node is found to
be tlflaggedlt, then its first successor in its list is
visited, and so on until a goal is found or a dead end is
reached. If the status of this first successor is found to
be ltunflagged@l, then the next successor in the first leaf
node's list is visited.

E.4.3.3.

a

i

a x

\

u x
4 s a
a

I

9
.- I

..
!=
rn
E
Q,

s

0

L
3

If the status of a predecessor node is unknown, then
Ada function BACK TRACK is invoked to return the status.
Both subprograms FOEWARD CHAIN and BACK TRACK are recursive.

Figure 3 shows the resulting status after running the
inference engine. To get to Figure 3 from Figure 2 the
following steps were taken:

- -

1. Node 2 ' s successor list is examined, and node 13 is

2. Since node 13 is an Itand gate" and both its predecessors

3. Node 13's successor list is examined, and node 17 is

4 . Since node 17 is an Itand gate" and node 7 is I1unflagged1l
node 17 becomes Wnf lagged".

5. FORWARD CHAIN returns to visiting node 13, where the
successor list is examined, and node 18 is passed
in another recursive call to FORWARD CHAIN.

6. Since node 18 is an "and gate" and both-its predecessors
(8 and 13) are flflaggedll, node 18 becomes lvflaggedlt.

7. Node 18's successor list is examined, and node 21 is
passed in another recursive call to FORWARD CHAIN.

8 . Since the status of node 20 is unknown, node 20 is
passed in a call to BACK TRACK.

9. Since node 20 is an @@and gate" and both its predecessors
(10 and 11) are 8fflagged1t, node 20 is Ifflagged1l
and BACK TRACK returns.

(18 and 20) are "flaggedf1, node 21 is llflaggedll
and a goal has been found.

nodes for additional goals.

passed in a call to FORWARD CHAIN.

(2 and 3) are tlflaggedll, node 13 becomes I1flaggedf1.

passed in a recursive call to FORWARD CHAIN.

10. Since node-21 is an 'land gate" and both its predecessors

11. The recursive calls return and visit other successor

3.2 Performance

The search speed is dependent upon the depth of the
graph from leaf to goal but is independent of the number of
leaves or goals in the graph. The only rules that are
attempted to be matched already have at least one element of
its left-hand-side Itflagged1l. When a goal node is
Ifflaggedf1, the inference engine will issue a procedure call
or task rendezvous to invoke logic associated with the goal
state (e.g. turn a circuit on or off).

Neither heuristic pruning nor optimal search techniques
are employed. Some control over program execution can be
accomplished by ordering the leaf nodes and/or ordering the
list of successors and predecessors. Factors such as
severity of problem or frequency of occurrence can be used
to prioritize these lists.

E.4.3.5.

I

.

W

t
0

V

This design assumes that all calculations on the data
are performed up front, prior to invoking the inference
engine. Speeds in excess of 500 rule firings per second
were executed on a single processor. A rule firing is
defined to be ffflagginglf a node, increasing working memory.
This is similar to results obtained by other non-LISP
inference engines (e.g. OPS83 or the BLISS version of
OPS5). These results indicate that real-time performance is
achievable.

4 USE OF ADA FEATURES

The knowledge base is an array of records. Each record
is a node with the following information:

STATUS - UNKNOWN, FLAGGED or UNFLAGGED
FORM - LEAF, SUBGOAL or GOAL
AND OR FLAG - AND or OR
POINTER TO PREDECESSOR LIST
POINTER TO SUCCESSOR LIST
TEXT STRING IDENTIFIER

The Ada package describing the data types in the knowledge
base is given in Figure 4 . A description of Ada constructs
used to transform LISP research prototype expert systems
into Ada production systems was given by Rude [2]. Unlike
Rude, I have implemented the predecessor and successor lists
as linked lists of records using access types rather than
arrays of records. This allows flexibility in dynamically
altering the knowledge base at runtime, e.g. if a sensor is
determined to be faulty and you wish to ignore its input.
In addition, the minimum amount of storage space.is used.
Using arrays would require that all nodes allocate space for
the largest list of predecessors or successors and would
also require re-compilation to adjust the maximum sizes.

Ada tasking was used to embed the expert system in a
larger Ada program. It can stand idle while other
monitoring and limit checking functions are performed and
then spring into action when an anomaly is detected. A more
extensive use of tasking can be made to perform various
functions of the expert system in parallel. This will be
discussed in the next section.

Although Ada provided adequate constructs to build this
inference engine there are a couple of features of other
languages (notably LISP languages) that would be very useful
for expert systems if supported in Ada. The main feature
desired is the ability to pass Ada functions as parameters
in subprogram calls. An alternative would be the ability to
embed a function in a data structure, such as the field of a
record, to be executed when accessed. This could be used to

I E.4.3.8.

perform calculations when needed. As mentioned earlier, in
this version, all calculations needed to execute the
inference engine must be performed up front.

object
to inherit values from a parent. For example, when new
elements are added to a linked list or tree-like structure,
they could inherit values in specified fields of their
parents. This would reduce subprogram calls and a number of
extra objects for data storage.

The second desired feature is the ability of an

5 FUTURE INVESTIGATION

5.1 Further Multitasking Work

One main thrust of our further work will focus on the
use of multitasking to improve performance. This will also
solve the problem of reading dynamic data which is
constantly being updated as inferencing is in progress. It
seems reasonable to use Ada tasking to enhance the real-time
performance of inference engines. Although true
production-quality multiprocessing Ada compilers do not yet
exist, it is now feasible to write tasking implementations
of inference engines which will exhibit order-of-magnitude
improvements in rule-firing rates when ported to true
multiprocessing Ada environments.

Douglass [3,4] lists five levels of potential
parallelism in rule-based expert systems. They are:
subrule level, rule level, search level, language level, and
system level. These levels include different types within
them. Douglass concentrates on rule level and various types
of search level parallelism. He gives a range of
quantitative results for these levels using mathematical
models and concludes that combinations of subrule, rule and
search level parallelism will yield better results than any
single level when the characteristics of the specific system
are taken into consideration. He also mentions that very
little work has been implemented and tested on parallel
computers.

Communication between processes is an important factor
in the efficiency of parallel algorithms. Generally
speaking, the more frequently that information is exchanged,
the slower the computation is performed since processes
spend a larger portion of their time communicating rather
than computing. Researchers working on the DADO machine
[5,6] have developed some unique methods of communicating
between parallel processors (e.g. a binary tree structure
of processors with communication rules controlled by
hierarchy).

E.4.3.9.

In Ada, the task is the natural construct for parallel
processing. However, multitasking involves considerable
overhead in creating/activating tasks, communicating between
them, and terminating them. This overhead must be compared
with the amount of computation performed in parallel in
order to determine the relative efficiency gained by various
strategies of parallel processing. Gehani [7] concurs, and
goes an to say that in designing concurrent programs in Ada,
one must avoid the polling bias in the communication
mechanism. He also points out that multiprocessing programs
will be more efficient if the underlying hardware offers
genuine concurrency.

Deering [8] also emphasizes that hardware
considerations, especially processor speeds versus memory
speeds, must be examined when designing the architecture of
expert systems. He says one should "study hardware
technology to determine at what grain sizes parallelism is
feasible and then figure out how to make [the] compilers
decompose programs into the appropriate-size pieces."

Granularity is the average amount of work done by a
process between communication with other processes. It is
inversely proportional to the frequency of communication.
The five levels of parallelism mentioned by Douglass range
from very finely grained to roughly grained. A fine grained
approach was taken by Rude 121 where each rule was itself
declared as an Ada task with rendezvous for links to
predecessors and successors. This concept has merit but is
questionable for real-time applications. In the
implementation of the PICON expert system for real-time
process control [9,10], a roughly grained algorithm was
chosen by segmenting parts of the knowledge base and
applying priorities to searching the different portions.
Our future investigations will include analyzing various
strategies, including forward and backward chaining on
individual rules in parallel, dividing the knowledge base,
and combinations of the different strategies.

5 . 2 User Interface

Another area for future work involves building a user
interface for accurate and efficient knowledge acquisition.
The accumulation of the domain knowledge and its insertion
into a knowledge base has often been a bottleneck in expert
system production. The Ada language IF-THEN-ELSE constructs
are readable and English-like. We will build a user
interface in an Ada syntax that is hopefully both easy for
the knowledge engineer to use, and also easily translates
into Ada code.

E.4.3.10.

6 CONCLUSION

The prototype demonstrates the feasibility of using Ada
for expert systems on a small scale. Investigation of
multitasking and alternate knowledge base representations
will help to analyze some of the performance issues as they
relate to larger programs.

References:

1.

2.

3.

4 .

5.

6 .

7.

a.

9.

10.

NASA Advanced Technical Advisory Committee, Advancing
Automation and Robotics Technology for the NASA Space
Station and for the U.S. Economy, NASA Technical
Memorandum 87566, Volume 11, March 1985 p. 5.

Rude, A., "Translating a Research LISP Prototype to a
Formal Ada Design Prototype", Proc. Washington Ada
Symposium, March 1985.

Douglass, R., "Characterizing the Parallelism in
Rule-Based Expert Systems1!, Proc. Hawaii International
Conference on Systems Science, HICSS-18, Jan. 1985.

Douglass, R., "A Qualitative Assessment of Parallelism
in Expert Systems", IEEE Software, May 1985, pp. 70-81.

Stolfo, S., and D. Miranker, "DADO: A Parallel Processor
for Expert Systems", Proc. 1984 Int. Conf. on Parallel
Processing, IEEE Computer Society Press, August, 1984.

Stolfo, S., "Five Parallel Algorithms for Production
System Execution on the DADO Machine", Proc. of the
NCAI, Austin, TX, 1984.

Gehani, N., Ada: Concurrent Programming, Prentice-Hall
Inc., 1984.

Deering, M. IIArchitectures for AI", Byte Magazine,
April, 1985.

Moore, R., L. Hawkinson, C. Knickerbocker, L. Churchman,
"A Real-Time Expert System for Process Controlvf, 1st
Conf. on AI Applications, IEEE Computer Society Press,
Dec. 1984.

Moore, R., "Adding Real-Time Expert System Capabilities
to Large Distributed Control Systemst1, Control
Engineering, April 1985.

E.4.3.11.

with DYNAMIC STRING;
package GRAPES is
type NODE-NUM is new INTEGER range O..INTEGER'LAST;

type STATUSES is (FLAGGED, UNFLAGGED, UNKNOWN);
type GATE is (AND-GATE, OR GATE) ;
type NODE-FORM is (GOAL, SUBGOAL, LEAF);
type PRED-NODE; -- DATA STRUCTURE FOR LINKED LIST -- OF PREDECESSORS
type PRED NODE PTR is ACCESS PRED - NODE;
type PREDNODE-is - record
NAME : NODE NUM;
NEG-LOGIC - FLAG : BOOLEAN := FALSE;

NEXT : PRED-NODE-PTR;

-- FALSE = want pred to be flagged. -- TRUE = want pred to be unflagged.

end record;

type SUCC-NODE; -- DATA STRUCTURE FOR LINKED LIST
-- OF SUCCESSORS

type SUCC NODE-PTR is ACCESS SUCC - NODE;
type SUCCINODE is record

end record;

NAME : NODE NUM;
NEXT : SUCC-NODE - - PTR;

type NODE is record -- DATA STRUCTURE FOR
THE --

STATUS : STATUSES := UNKNOWN;
AND OR : GATE := AND GATE;

NODE OF
GRAPH

- -- ANDmeans all predecessors must -- be satisfied. -- OR means one or more predecessors -- must be satisfied. -- Does not apply to leaf nodes.
PRED : PRED NODE PTR;
succ : SUCC-NODE-PTR;
FORM : NODE-FORM:
MESSAGE : DYNAMIC - STRING.UCSD - STRINGS;

end record;

type KNOWLEDGE - BASE is array (NODE NUM range <>) of NODE;

type FLAGGED-NODES is array (INTEGER range <>)
of NODE NUM; -- Init. state

function SIZE return INTEGER: -- ALLOWS SIZE OF GRAPH TO

-- ARRAY OF RECORDS

-- BE READ AT RUN TIME.
end GRAPHS;

Figure 4 . Graphs Package

E.4.3.12

